mMass 3.4 User’s Guide
written by Martin Strohalm
version 1.6
Contents

1. Preface .. 5
 1.1. Motivation ... 5
 1.2. Authors .. 5
 1.3. Typographical Conventions ... 6
 1.4. Technicalities .. 6
 1.5. License ... 6

2. Installation .. 8
 2.1. MacOS X ... 8
 2.2. MS Windows ... 8
 2.3. Linux ... 9
 2.4. Running from Source .. 9

3. User Interface ... 11
 3.1. Application Layout ... 11
 3.2. Main Menu .. 11
 3.3. Toolbar ... 14
 3.4. Documents Panel ... 14
 3.5. Spectrum Viewer .. 17
 3.6. Peaklist Panel ... 21

4. Document Basics ... 23
 4.1. Supported Formats ... 23
 4.2. Open Document .. 23
 4.3. Blank Document ... 24
 4.4. Save Document ... 24
 4.5. Export ... 24
 4.6. Print Spectrum .. 25
 4.7. Document Info ... 25
 4.8. Analysis Report .. 27

5. Data Processing .. 28
 5.1. Crop ... 28
 5.2. Baseline Correction .. 29
 5.3. Smoothing .. 30
 5.4. Peak Picking .. 31
 5.5. Deisotoping .. 32
 5.6. Utilities ... 33

6. Calibration ... 34

7. Mass Calculator .. 36
 7.1. Formula Syntax ... 36
 7.2. Compound Summary ... 36
 7.3. Ion Series .. 36
 7.4. Isotopic Pattern .. 37

8. Periodic Table of Elements .. 39

9. Sequence Tools .. 40
 9.1. Sequence Editor .. 40
 9.2. Modifications ... 41
 9.3. Protein Digest ... 42
 9.4. Peptide Fragmentation .. 43
 9.5. Data Matching ... 44
 9.6. Sequence Search ... 45
10. Compound Search...47
11. Mascot Search...49
12. ProFound Search..51
13. Peak Differences ..52
14. Libraries ..53
 14.1. Modifications ..53
 14.2. Enzymes ..54
 14.3. Compounds ..55
 14.4. Calibration Masses ...56
 14.5. Mascot Servers ...57
 14.6. Presets ...58
15. Appendix ..59
 15.1. Elements ...59
 15.2. Amino acids ...71
 15.3. Fragments ..72
 15.4. Enzymes ...73
1. Preface

1.1. Motivation

Mass spectrometry is involved in many fields of modern biochemistry. It has become a common tool not only for precise mass measurement, but also for protein identification, peptide sequencing, the identification of various post-translational modifications, and even for the structural characterization of proteins or protein complexes.

Unfortunately, it is common practice for commercial software tools to be tightly coupled to just one data format. Such software can only be used to analyze data from a specific instrument, and this causes serious problems for laboratories that use more than one instrument. This tight software-instrument relationship also causes problems for laboratories that do not possess their own instruments, and have to obtain mass spectra from other, collaborating, laboratories. Such laboratories have no opportunity to check and/or re-analyze the raw data themselves.

Because mass spectrometry has primarily been used for large-scale protein identification in recent years, most manufacturer software is focused on this topic, together with the issue of automated high-throughput analysis. Despite this, in many instances mass spectrometry experiments still depend on the precise analysis of a single mass spectrum and the researcher’s experience.

To provide a solution to these problems I have started to develop mMass - open source multi-platform tool for precise mass spectrometric data analysis and interpretation.

1.2. Authors

mMass is the fruit of years of study and development. While I’ve put a lot of energy into making this program as stable and reliable as possible, mMass comes with no warranty of any kind. You are however welcome to read the code, modify it and send me any suggestions or patches. mMass development still continues, so any ideas, function requests or bug reports are more than welcome. Feel free to contact me through the mMass’s web page http://www.mmass.org.

Author

Martin Strohalm, PhD: Laboratory of Molecular Structure Characterization
Institute of Microbiology, Prague
Academy of Sciences of the Czech Republic
http://ms.biomed.cas.cz
http://www.mmass.org

Special Thanks to

I wish to express my thanks to all the people involved in the excellent Python language, wxPython libraries and NumPy module, and namely to the people helping me to make mMass still better:

Daniel Kavan, MSc: C programing
Laboratory of Molecular Structure Characterization
Institute of Microbiology, Prague
Academy of Sciences of the Czech Republic
http://ms.biomed.cas.cz

Bedřich Košata, PhD: Python consultations
Institute of Chemical Technology, Prague
http://bkchem.zirael.org

Martin Hassman, MSc: Python consultations
http://www.met.cz
1.3. Typographical Conventions

Following typographical conventions are used throughout the guide:

Names of mMass’s components and modules, names of dialog values etc.

Menu items and buttons.

Terminal commands, scripts and other pieces of code.

Advanced tips and hints.

Important notes and warnings.

1.4. Technicalities

At the very beginning mMass started as a simple PHP-based tool to compare peak differences within mass spectrum. Fortunately, PHP wasn’t powerful enough for calculations and I stated to learn Python...

Current version of mMass is written completely in Python programing language (http://www.python.org) and uses wxPython libraries (http://www.wxpython.org) for graphical user interface (GUI). In addition, NumPy module (http://www.numpy.org) is used for faster computing of mathematical tasks.

Since resolution of modern mass spectrometers grows up, resulting data sets become very large. Even Python is not powerful enough for some calculations, therefore a piece of code written in C has been added into mMass to speed up a spectrum drawing.

1.5. License

This program and its documentation are Copyright © 2005-10 by Martin Strohalm.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. See the file LICENSE for details (and make sure that you have entirely read and understood it!)
Please note in particular that, if you use this program, or ANY part of it - even a single line of code - in another application, the resulting application becomes also GPL. In other words, GPL is a "contaminating" license.

If you do not understand any portion of this notice, please seek appropriate professional legal advice. If you do not or - for any reason - you can not accept ALL of these conditions, then you must not use nor distribute this program.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License (http://www.gnu.org).

The origin of this software must not be misrepresented; you must not claim that you wrote the original software. Altered source versions must be clearly marked as such, and must not be misrepresented as being the original software. This notice must not be removed or altered from any source distribution.
2. Installation

2.1. Mac OS X

As usually, there is no special installation procedure for Mac OS X. mMass is available as a regular disk image containing the “mMass.app” application. This is a standalone package containing all the necessary modules and libraries. To install mMass just open the disk image and drag the mMass.app to your application folder. After first run mMass creates the specific folder “~/Library/Application Support/mMass/” to store all your presets and objects libraries. Current version of mMass was successfully tested on the Intel based computers with Mac OS X 10.5 and 10.6.

2.2. MS Windows

In most cases, installation on MS Windows is very easy. mMass is available as regular ZIP archive containing the “mMass” application folder. There are no installation steps needed to run mMass under MS Windows. This means that you can run the program directly after unpacking downloaded archive. Simply run the “mmass.exe”. Current version of mMass was successfully tested on XP SP3, Vista and Windows7.

⚠️ Please note that you must have the privileges for writing to the “mMass” folder, otherwise you will not be able to store any program presets such as startup defaults, modifications etc..

⚠️ Do not try to associate any file type with mMass on MS Windows since it does not work properly. Instead of adding document to the running instance of mMass, every document will be opened within a new instance of the program.

For older versions of MS Windows, mMass sometimes doesn’t want to start up showing the following message instead: The application failed to start because the application configuration is incorrect. Reinstalling the application may fix this problem. In such case you’ll need to download and install the runtime components of Visual C++ Libraries from Microsoft's website.

2.3. Linux

I have to say that I’m not very familiar with Linux platform and therefore there is no special build of mMass available for Linux. Nevertheless, I am always testing and debugging mMass on my virtual version of Debian distribution to make it work properly and to retain application native look. If you want to run mMass on Linux see the following chapter to run it from the source code.

2.4. Running from Source

mMass belongs to the wide family of open source software so why not to modify it? All you need to do is download and unpack the mMass's source ZIP archive and then do what you can. There are some additional modules and libraries needed to run mMass, however, all of them are available for free and easy to install.

Dependencies

Python (http://www.python.org) “Python is a programming language that lets you work more quickly and integrate your systems more effectively. You can learn to use Python and see almost immediate gains in productivity and lower maintenance costs.”

wxPython (http://www.wxpython.org) “wxPython is a GUI toolkit for the Python programming language. It allows Python programmers to create programs with a robust, highly functional graphical user interface, simply and easily. It is implemented as a Python extension module (native code) that wraps the popular wxWidgets cross platform GUI library, which is written in C++.”

NumPy (http://www.numpy.org) “NumPy is the fundamental package needed for scientific computing with Python. It contains among other things: a powerful N-dimensional array object, sophisticated (broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform, and random number capabilities.”

⚠️ Please note that current version of mMass was developed and tested using Python 2.6, wxPython 2.8.10.1 and NumPy 1.2. I cannot guarantee that mMass will work with different version of particular libraries.

Compiling C-code

In addition to installing all of the above libraries and modules you need to compile a piece of C code used to speed up a spectrum drawing. It can be done very easily with the “setup.py” script located in “mspy/plot/” folder.

On Mac OS X go to the “mspy/plot/” folder and run compilation command in Terminal, then locate resulted “calculations.so” file in the build folder and move it to “mspy/plot/”. The compilation command should be like:

```
python setup.py build
```

On MS Windows go to the “mspy/plot/” folder and run compilation command in Command Prompt, then locate resulted ”calculations.pyd” file in the build folder and move it to “mspy/plot/”. If you are using MinGW (http://www.mingw.org) the compilation command should be like:

```
python setup.py build --compiler=mingw32
```

On Linux go to the “mspy/plot/” folder and run compilation command in Terminal, then locate resulted calculations.so file in the build folder and move it to “mspy/plot/”. The compilation command should be like this:
Running Application

To start up mMass go to mMass’s main folder and simply run the following command:

```
python mmass.py
```

Making Application Bundle

If you want to make your own application bundle for Mac OS X or MS Windows you need to have py2app (http://pypi.python.org/pypi/py2app) or py2exe (http://pypi.python.org/pypi/py2exe) respectively. After installing the corresponding utility you can make the bundle simply by using "setup.py" script located in mMass’s main folder. Just go to the folder and run the following command:

On Mac OS X

```
python setup.py py2app
```

On MS Windows

```
python setup.py py2exe
```
3. User Interface

3.1. Application Layout

Beside the standard elements, like toolbar etc., mMass's user interface is divided into three main parts: Documents Panel, Spectrum Viewer and Peaklist Panel. All the processing and analyzing modules and tools are available as floating panels to enable direct validation of results with a real spectrum.

3.2. Main Menu

File

New - creates a blank document with no data.
Open - opens spectrum document.
Open Recent - opens one of the recent documents.
Close - closes selected document.
Close All - closes all opened documents.
Save - saves selected document into mMass's native format.
Save As - saves selected document in a new file.
Export - exports current spectrum view as an image, spectrum points or peak list.
Print Spectrum - prints current spectrum view.
Document Info - Shows document information panel for selected document.

View

Show/Hide Gridlines - shows or hides gridlines in spectrum viewer.
Show/Hide Legend - shows or hides legend in spectrum viewer.
Show/Hide Position Bar - shows or hides position bar in spectrum viewer.
Show/Hide Gel - shows or hides gel-view in spectrum viewer.
Show/Hide Legend in Gel - shows or hides legend in gel view.
Show/Hide Cursor Tracker - shows or hides cursor tracker in spectrum viewer.
Show/Hide Labels - shows or hides peak labels in spectrum viewer.
Show/Hide Labels Ticks - shows or hides tick for peak labels.
Show/Hide Labels Charge - shows or hides charge for peak labels.
Show/Hide Labels Background - shows or hides a solid white background for peak labels.
Show/Hide Annotation Marks - shows or hides annotation marks for annotated or matched peaks.
Horizontal/Vertical Labels - shows peak labels horizontally or vertically.
Overlapping/Non-Overlapping Labels - enables or disables automatic managing of labels overlaps.
Labels in All Documents - shows or hides peak labels in all visible spectra.
Autoscale Intensity - enables or disables automatic scaling of intensity axis while scrolling a spectrum.
Normalize Intensity - enables or disables normalization of intensity axis for all spectra.

Processing

Undo - reverts back last operation.
Peak Picking - automatically finds and labels peaks in selected document.
Deisotoping - automatically assigns charges and deletes isotopes for peaks in current peak list.
Correct Baseline - corrects baseline for selected spectrum.
Smooth Spectrum - smooths selected spectrum.
Crop - crops spectrum points and peak list for selected document.
Calibration - calibrates data in selected document using internal, external or statistical calibration.
Normalize Data - normalizes data in selected document to 0 - 100% of intensity.
Swap Data - swaps data between spectrum points and peak list.

Sequence

New - creates new sequence object in selected document.
Import - imports sequence object from file into selected document.

Edit Sequence - shows sequence editor with selected sequence.

Edit Modifications - shows sequence modifications editor with selected sequence.

Digest Protein - generates digestion peptides from selected sequence.

Fragment Peptide - generates fragments from selected sequence.

Search by Mass - searches for peptide corresponding to given m/z value within selected sequence.

Calibrate by Matches - uses current sequence matches as reference masses for data re-calibration.

Delete Matches - deletes all the matches for selected sequence.

Delete Sequence - deletes selected sequence object.

Tools

Measure Distances - sets mouse tool to measure distances between two peaks in a spectrum.

Label Peak - sets mouse tool to label peaks in selected spectrum.

Label Point - sets mouse tool to label exact points in selected spectrum.

Delete Label - sets mouse tool to delete labels in selected spectrum.

Periodic Table - shows periodic table of elements.

Mass Calculator - calculates ion series and isotopic pattern for specified molecular formula.

Compound Search - searches for specified compounds and adducts within selected document.

Peak Differences - generates table of peak differences to searches for amino acids or any m/z difference.

Mascot Peptide Mass Fingerprint - sends selected peak list to Mascot’s Peptide Mass Fingerprint tool.

Mascot MS/MS Ion Search - sends selected peak list to Mascot’s MS/MS Ion Search tool.

Mascot Sequence Query - sends selected peak list to Mascot’s Sequence Query tool.

ProFound Search - sends selected peak list to ProFound Search tool.

Libraries

Modifications - Shows modifications library editor.

Enzymes - Shows enzymes library editor.

Compounds - Shows compounds library editor.

Calibration Masses - Shows calibration masses library editor.

Mascot Servers - Shows Mascot servers library editor.

Presets - Shows presets library editor.
3.3. Toolbar

To retain platform conventions and user experience there are two slightly different toolbars. In contrast to Linux and MS Windows, on Mac OS X there are no individual buttons for common document operations such as Open, Save, Print etc. and all related tools are grouped to a single button such as Processing or Sequence. In addition, the Search filed is available on Mac OS X to highlight selected m/z value in a spectrum.

Main application toolbar on Mac OS X.

Main application toolbar on Linux or MS Windows.

3.4. Documents Panel

The main purpose of the Documents Panel is to provide a structured view of loaded documents with all its elements. In this panel, each element of selected document can be edited by double-clicking or processed via specific command or context menu. Most of the sequence related functions are also available via main menu Sequence.
Document

- **To add blank document:**
 Press button from the bottom toolbar and select **New Document**, or choose **File → New** from the main menu.

- **To select document for analysis:**
 Click on any element of the document you want to select. Regardless of the spectrum color when document is selected all labels ticks are shown in red. Selected document is marked by a bold title.

- **To temporarily hide document in spectrum viewer:**
 Click on the color bullet next to document title.

- **To change document title, information or notes:**
 Double-click on the document title to show up **Document Info** panel and type the new title or notes. See **Document Information** chapter for more details.

- **To change document color:**
 Right-click on the document title and choose **Change Colour**.

- **To close document:**
 Click on the document title and press **Command+Backspace** or **Delete**, or press button from the bottom toolbar and choose **Close Document**.

- **To close all documents:**
 Press button from the bottom toolbar and choose **Close All Documents**, or choose **File → Close All** from the main menu.

User Annotations

It is possible to add user annotations to any peak in a peak list. You can specify annotation **Label** which is then shown in **Documents Panel** and assign a molecular **Formula** and **Calculated m/z** value. All the annotations with defined calculated m/z value can be used as calibration standards to re-calibrate your data. If the molecular formula is specified you can generate its isotopic pattern to see the difference between theoretical and measured peak.

![Annotation dialog.](image)

- **To add user annotation:**
 Double-click on the peak in **Peaklist Panel** or press in the bottom toolbar of **Peaklist Panel** to show up annotation dialog and type your annotation.

- **To edit user annotation:**
 Double-click on the annotation to show up annotation dialog and edit the annotation.
To delete user annotation:
Click on the annotation and press Command+Backspace or Delete, or press button from the bottom toolbar and choose Delete Annotation.

To delete all user annotations:
Right-click on any annotation or the annotations root and select Delete All Annotations, or press button from the bottom toolbar and choose Delete All Annotations.

To highlight user annotation in spectrum viewer:
Click on the annotation and spectrum moves to the m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

To mark all annotated peaks in spectrum viewer:
Click on any annotation or the annotations root. Small green circle shows up on each annotated peak.

To show isotopic pattern of user annotation:
Right-click on the annotation and select Show Isotopic Pattern. Mass Calculator panel shows up with the annotation formula and corresponding peak charge. Please note that this function is available only if molecular formula and charge is specified within annotation. See Mass Calculator chapter for more information.

To re-calibrate data by user annotations:
Right-click on any single annotation or annotations root and select Calibrate by Annotations. All the user annotations will be send to Calibration panel. Please note that only those annotations with specified theoretical m/z value can be used for data calibration. See Calibration chapter for more information.

Sequence

In order to use some mMass's tools such as Protein Digest or Peptide Fragmentation, specific sequence object must be defined. All the sequence matches are stored in the similar way as the user annotations and there are same features available as well. See Sequence Tools chapter for more information about sequence editing and processing.

To add new sequence:
Press button from the bottom toolbar and select New Sequence, or choose Sequence → New Sequence from the main menu. See Sequence Tools chapter for more information.

To edit sequence:
Double-click on the sequence title and Sequence Editor shows up. See Sequence Tools chapter for more information.

To delete sequence:
Click on the sequence title and press Command+Backspace or Delete, or press button from the bottom toolbar and choose Delete Sequence.

To edit sequence match:
Double-click on the sequence match to show up annotation dialog and edit the annotation.

To delete sequence match:
Click on the sequence match and press Command+Backspace or Delete or press button from the bottom toolbar and choose Delete Match.

To delete all sequence matches:
Right-click on any sequence match or the sequence title and select Delete All Matches, or press button from the bottom toolbar and choose Delete All Matches.

To highlight sequence match in spectrum viewer:
Click on the sequence match and spectrum moves to the m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.
To mark all sequence matches in spectrum viewer:
Click on any single sequence match or sequence title. Small green circle shows up on each matched peak.

To show isotopic pattern of sequence match:
Right-click on the sequence match and select Show Isotopic Pattern. Mass Calculator panel shows up with the peptide formula and corresponding peak charge. See Mass Calculator chapter for more information.

To re-calibrate data using sequence matches:
Right-click on any single match or sequence title and select Calibrate by Matches. All the matches will be send to Calibration panel. See Calibration chapter for more information.

3.5. Spectrum Viewer

Since most time in data interpretation is spent manipulating spectra (e.g., moving, shifting, scaling, zooming etc.), I aimed to make these functions as easy and user-friendly as possible. There are no specific buttons or menu items hidden deep inside the application menu just to zoom spectrum. Everything is accessible by mouse, keyboard or combination of both. In addition, Spectrum Viewer not only provides for spectrum visualization, but also offers some other useful features.

Spectrum Manipulations

To zoom spectrum range:
Select the m/z range with right or middle mouse button pressed. (Use Ctrl key to substitute right mouse button on Mac OS X.)

To zoom continuously from cursor position:
Move the mouse cursor to desired m/z position and scroll the mouse wheel while holding Alt or Ctrl key.
To zoom from the center of current view:
Use Left and Right arrows keys on your keyboard while holding Alt key.

To zoom from the start of current view:
Drag the m/z axis horizontally with right mouse button pressed.

To move spectrum horizontally:
Scroll the mouse wheel or drag the m/z axis horizontally with left mouse button pressed. If you prefer using keyboard, use Left, Right, PageUp, PageDown, Home and End keys.

To scale intensity axis:
Scroll the mouse wheel while holding Shift key or drag the intensity axis vertically with right mouse button pressed.

To scale intensity axis automatically to fit current spectrum range:
Press button in the bottom toolbar or from the main menu choose View → Autoscale Intensity.

To show full mass range:
Double-click on the m/z axis.

To show full intensity range:
Double-click on the intensity axis.

To show full spectrum:
Double-click anywhere in the spectrum.

To show real data points in spectrum:
Zoom to the level where data points are separated and small circles appear on the spectrum line.

View Options

There are different view options available for Spectrum Viewer. Most commonly used options are available directly from the bottom toolbar, others can be accessed via the application main menu.

To show or hide gridlines:
From the main menu choose View → Show/Hide Gridlines.

To show or hide legend:
From the main menu choose View → Show/Hide Legend.

To show or hide legend in gel view:
From the main menu choose View → Show/Hide Legend in Gel.

To show or hide position bar:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Position Bar.
To show or hide gel view:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Gel.

To show or hide cursor tracker:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Cursor Tracker.

To show or hide labels:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Labels.

To show or hide labels ticks:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Labels Ticks.

To show or hide charge in labels:
From the main menu choose View → Show/Hide Labels Charge.

To show or hide solid background for labels:
From the main menu choose View → Show/Hide Labels Background.

To show or hide annotation marks:
Press button in the bottom toolbar or from the main menu choose View → Show/Hide Annotation Marks.

To change labels orientation:
Press button in the bottom toolbar or from the main menu choose View → Horizontal/Vertical Labels.

To prevent overlapping labels:
From the main menu choose View → Non-Overlapping Labels. This improves readability but some labels are hidden.

To show labels in all documents:
From the main menu choose View → Labels in All Documents. Only labels from the selected document will be shown if this feature is disabled.

To enable intensity autoscale:
Press button in the bottom toolbar or from the main menu choose View → Autoscale Intensity.

To enable intensity normalization:
Press button in the bottom toolbar or from the main menu choose View → Normalize Intensity.

To set m/z precision (number of digits):
Press button in the bottom toolbar or from the main menu choose View → Canvas Properties to show up Canvas Properties dialog and move the m/z precision slider. This settings is used for all occurrences of mass throughout the application.

To set intensity precision (number of digits):
Press button in the bottom toolbar or from the main menu choose View → Canvas Properties to show up Canvas Properties dialog and move the Intensity precision slider. This settings is used for all occurrences of intensity throughout the application.

To set gel height:
Press button in the bottom toolbar or from the main menu choose View → Canvas Properties to show up Canvas Properties dialog and move the Gel height slider.

To set axis and legend font size:
Press button in the bottom toolbar or from the main menu choose View → Canvas Properties to show up Canvas Properties dialog and move the Canvas font size slider.
To set label font size:
Press button in the bottom toolbar or from the main menu choose View → Canvas Properties to show up Canvas Properties dialog and move the Label font size slider.

Canvas Properties dialog.

Spectrum Tools

To measure distances in spectrum:
Press button in the bottom toolbar and drag mouse in the spectrum with left mouse button pressed. Current distance shows in the bottom toolbar and next to the mouse cursor if the Cursor Tracker is enabled.

To label peak:
Press button in the bottom toolbar and select desired peak in the spectrum. Only the most intense peak in the selection will be labeled. See Data Processing chapter for more information.

To label point:
Press button in the bottom toolbar and click at desired point in the spectrum. Small cross mark tracks the spectrum until you release the mouse button.

To delete labels:
Press button in the bottom toolbar and select area where the labels should be deleted. Only those peaks/labels where its m/z and intensity values fall into the selected area will be deleted.

To set peak picking height:
Press button in the bottom toolbar to show up Tools Properties dialog and move the Picking height slider. See Data Processing chapter for more information.

To calculate baseline level from peak vicinity rather then from entire spectrum:
Press button in the bottom toolbar to show up Tools Properties dialog and check Adaptive threshold checkbox. See Data Processing chapter for more information.

To automatically set labeled peak as monoisotopic:
Press button in the bottom toolbar to show up Tools Properties dialog and check Set as monoisotopic checkbox.
3.6. Peaklist Panel

Peaklist Panel provides a table of all labeled peaks in selected document. For each peak, its \(m/z \), corrected intensity (real intensity - baseline), relative intensity, charge, signal to noise ratio and baseline intensity are shown. From this panel, any peak can be added, annotated, edited or removed. A simple peak editor can be easily used to create your own peak list manually.

To manually add new peak:
Press \(\text{Add} \) in the bottom toolbar to show and clear peak editor, fill-up the peak parameters and press \(\text{Add} \) button.

To edit peak parameters:
Press \(\text{Replace} \) in the bottom toolbar to show peak editor and click on the peak. Edit peak parameters and press \(\text{Replace} \) button.

To copy peak with different parameters:
Press \(\text{Add} \) in the bottom toolbar to show peak editor and click on the peak. Change peak parameters and press \(\text{Add} \) button.

To delete peaks:
Select the peaks you want to delete and press \(\text{Command}+\text{Backspace} \) or \(\text{Delete} \), or press \(\text{Delete} \) button.
from the bottom toolbar and choose Delete Selected. You can use Delete Labels tool in Spectrum Viewer as well.

- **To delete peaks by threshold:**
 Press in the bottom toolbar and choose Delete by Threshold to show up threshold dialog. Set Minimal value and Threshold type and press Delete button. Another way is to sort peak list by specific value, selecting and deleting unwanted peaks.

- **To delete all peaks:**
 Press in the bottom toolbar and choose Delete All.

- **To annotate peak:**
 Double-click the peak or press in the bottom toolbar to show up annotation dialog and type your annotation.

- **To highlight peak in spectrum viewer:**
 Click on the peak and spectrum moves to the m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

- **To copy peaks into clipboard:**
 Select the peaks you want to copy, press Command+C (Ctrl+C on MS Windows and Linux) and column selection dialog shows up. Select the columns you’d like to copy and press Copy.

- **To export peak list:**
 Press button from the main toolbar or choose File → Export from the main menu to show up Export dialog, and select Export Peaklist Data tool. See Export chapter for more information.

⚠️ Please note that “a.i.” value in the peak editor represents absolute peak intensity without any baseline correction.
4. Document Basics

4.1. Supported Formats

mMass supports several mass spectrometry formats. Two of the most popular XML-based formats are *mzData* http://www.psidev.info and *mzXML* http://tools.proteomecenter.org. Because both formats are open source and well documented many data converters exist for manufacturers native files, and therefore both are supported by *mMass*. Mass spectra and peak list data can also be easily imported from a simple ASCII file consisting of two columns (m/z values and intensity values) separated by a tab, space, comma or semicolon.

Since it is often impossible to obtain the manufacturer's description of their native file formats, they are not currently supported. However, if you have a Bruker's CompassXport tool installed on your computer it is automatically used to convert and open the raw data from Bruker’s instruments. This tool is available for free at www.bdal.de, unfortunately, for MS Windows platform only. In *mMass*’s Preferences you can specify whether *mzXML* or *mzData* format will be used for conversion and whether profile spectrum or peak list only will be extracted.

mMass is so-called single-spectrum-editor therefore experiments such as LC-MS runs cannot be analyzed by *mMass*. However, it is possible to open any selected scan from such runs to analyze it separately. Sure, it does not make sense for many LC-MS experiments but sometimes even this feature can be very useful.

4.2. Open Document

- **To open document:**
 Drag the document file into *mMass*’s main window or choose File → Open from the main menu.

- **To open spectrum from Bruker’s instruments:**
 Drag the spectrum folder into *mMass*’s main window or choose File → Open from the main menu and locate the analysis.baf, analysis.yep or fid file. You need to have CompassXport tool installed.

- **To open selected scan from LC-MS run:**
 Drag the document file into *mMass*’s main window or choose File → Open from the main menu. If the document contains more than one scan Select Scan dialog shows up. Select the scan(s) you’d like to open and press Open button.

For ASCII XY and some *mzXML* documents *mMass* is unable to determine whether the document contains spectrum points or just centroids of peaks and chooses spectrum as default. If this decision isn’t correct you can swap the data between line spectrum and peak list by choosing Processing → Swap Data from the main menu.
4.3. Blank Document

One of the unique features of mMass is the ability to make a blank document and manually create peak list. This feature is particularly useful in those cases where raw spectrum is unavailable, and user has only a spectrum image or printed list of labelled peaks. Such is often the situation in laboratories that do not have their own instruments and have to send their samples to other laboratories. This feature gives such laboratories the chance to analyze the data themselves. Once the peak list is prepared, all interpretation tools can be used. See Peaklist Panel chapter for more information about peak list editing.

Blank documents can also be used for protein digest or peptide fragmentation simulations or to make a personal database of sequences which can be easily imported into any document.

➡ To open blank document:
Press button from the bottom toolbar and select New Document or choose File → New from the main menu.

4.4. Save Document

To retain all the information related to analysis such as protein sequence or user’s annotations mMass has its own document format to store the data (mSD format). This format is XML-based to be easily processed by other software.

➡ To save document:
Select the document in Documents Panel and choose File → Save from the main menu.

4.5. Export

➡ To export spectrum image:
Press button from the main toolbar or choose File → Export from the main menu to show up Export dialog, and select Export Spectrum Image tool. Specify export parameters and press Export button.

➡ To export spectrum points:
Press button from the main toolbar or choose File → Export from the main menu to show up Export dialog, and select Export Spectrum Data tool. Specify export parameters and press Export button.

➡ To export peak list:
Press button from the main toolbar or choose File → Export from the main menu to show up Export dialog and select Export Peaklist Data tool. Specify export parameters and press Export button.
On MacOS X and Linux platform you can use native support for PDF creation to export spectrum into vector format. From the main menu choose File → Print and select PDF. On MS Windows you need to have some PDF convertor installed first.

To export spectrum images for previews on monitor or for e-mail use 72 dpi. To export large spectrum images for printing or publications use larger resolution to thicken the lines and fonts. It is often the case that for smaller images, font size became too big. Use Canvas Properties dialog to change a font size.

4.6. Print Spectrum

To print spectrum:
Choose File → Print Spectrum from the main menu and current Spectrum Viewer contents will be printed.

4.7. Document Info

Document Info panel provides some information about selected document and place to write your own description of the sample, analysis and results.

To show document info:
Press button from the main toolbar or choose File → Document Info from the main menu. You can double-click on the document title in Documents Panel as well.

Document Summary

In the Document Summary part of Document Info panel you can specify document Title, Operator’s name, Contact and Institution, used Instrument and measurement Date. You can save current values as a presets to use it later again.

To show document summary:
Press button from the main toolbar or choose File → Document Info from the main menu to show up Document Info panel. Then press button from the panel toolbar.

To save current values as presets:
Write the information you’d like to save as presets. Press button from the panel toolbar and choose Save as Presets. In the dialog write presets name and press Save button.

To use saved presets:
Press button from the panel toolbar and choose any of your presets from the pop-up menu.
To delete saved presets:
Choose Libraries → Presets from the main menu to show up Presets Library editor. Choose the presets you’d like to delete and press Delete button.

To rename saved presets:
Choose Libraries → Presets from the main menu to show up Presets Library editor. Choose the presets you’d like to rename, type the new name and press Rename button.

Spectrum Info
In the Spectrum Info part of Document Info panel you can specify Scan number, Retention time, MS level and Precursor m/z. In addition, number of spectrum points and labeled peaks are shown.

To show spectrum info:
Press button from the main toolbar or choose File → Document Info from the main menu to show up Document Info panel. Then press button from the panel toolbar.

Analysis Notes
Analysis Notes provides a place to type you personal notes about sample preparation, sample analysis and interpretation results. These information will be also shown in analysis report. See Analysis Report chapter for more information.

To show analysis notes:
Press button from the main toolbar or choose File → Document Info from the main menu to show up Document Info panel. Then press button from the panel toolbar.
4.8. Analysis Report

Analysis report can be generated from selected document and all available information such as document info, current Spectrum Viewer contents, user notes and annotations, sequence, modifications and matches will be included. This report is generated in HTML format and automatically shows up in your web browser.

To make analysis report:
Press button from the main toolbar or choose File → Analysis Report from the main menu. Report shows up in your web browser.

To sort data in report tables:
Click on appropriate column header in the report. Please note that this feature needs to have JavaScript enabled in your web browser.

It is generally good practice to write your analysis notes and results into document using Document Info tool prior to report generation. See Document Info chapter for more information.

On MacOS X and Linux platform you can use native support for PDF creation to make PDF report. When the report shows up in your web browser choose File → Print and select PDF. On MS Windows you need to have some PDF convertor installed first.
5. Data Processing

mMass offers number of common data processing functions such as data crop, baseline correction, smoothing, peak picking, charging and deisotoping, described in this chapter. In order to avoid permanent changing of parameters and speed up the processing of data from different instruments you can define your own processing presets and use it frequently. For smoothing and baseline correction a preview is available and recommended to use before applying to your data. Your last processing step can be undone.

- **To open data processing tool:**
 On Mac OS X press button from the main toolbar. Separate buttons for different processing tools are available on other platforms. All the tools can be reached via Processing menu as well.

- **To undo last processing step:**
 From the main menu choose Processing → Undo.

- **To save current values as presets:**
 Press button from the panel toolbar and choose Save as Presets. In the dialog type the presets name and press Save button.

- **To use saved presets:**
 Press button from the panel toolbar and choose any of your presets from the popup menu.

- **To delete saved presets:**
 Choose Libraries → Presets from the main menu to show up Presets Library editor. Choose the presets you’d like to delete and press Delete button.

- **To rename saved presets:**
 Choose Libraries → Presets from the main menu to show up Presets Library editor. Choose the presets you’d like to rename, type the new name and press Rename button.

⚠️ Please note that every preset contains parameters from all the processing tools. If you load any presets, parameters for all the tools will be changed. This is especially important for Peak Picking tool where parameters from other panels are used (Smoothing and Deisotoping).

5.1. Crop

This function simply discards all the spectrum data points, labeled peaks, annotations and sequence matches which are out of the m/z range specified by *Low mass* and *High mass* parameters.

![Crop tool](image)

- **Low mass** - data below this limit will be removed.
- **High mass** - data above this limit will be removed.

- **To open crop tool:**
 On Mac OS X press button from the main toolbar, then press button from the panel toolbar. On other platforms press button from the main toolbar. You can choose Processing → Crop from the main menu as well.
To crop data:
Using Low mass and High mass values specify the m/z range to keep and press Apply button.

Using Crop tool to remove “matrix area” from MALDI-TOF mass spectra can significantly reduce number of spectrum data points and speed up other processing.

5.2. Baseline Correction

Especially for MALDI-TOF mass spectra of proteins a strong baseline distortion is common problem which needs to be corrected quite often. Using Baseline Correction tool, this processing step can be done very easily. Baseline is calculated from the spectrum noise as a median of all data points minus noise width (median of absolute deviations). Using Precision slider, baseline can be composed from 1 to 100 segments to trace spectrum shape precisely. In addition, you can specify Relative offset to move baseline down a bit. Smooth baseline to eliminate local extremes. After setting all the parameters you can see a preview prior to applying baseline correction to your data.

Baseline Correction tool.

- Precision - number of baseline segments (1 = straight line).
- Relative offset - baseline intensity shift.
- Smooth baseline - applies smoothing to baseline.

To open baseline correction tool:
On Mac OS X press button from the main toolbar, then press button from the panel toolbar. On other platforms press button from the main toolbar. You can choose Processing → Smooth Spectrum from the main menu as well.

To preview corrected data:
Specify all the parameters and press Preview button. A temporary (red) corrected spectrum appears in Spectrum Viewer.

To subtract baseline from data:
Specify all the parameters and press Apply button.

Please note that calculated baseline is shows in Spectrum Viewer while moving Precision or Relative offset slider. This feature can be very helpful to set baseline precisely.

Please note that current peak list will be removed after applying baseline correction.

Please note that while the spectrum and peak list are changed by baseline correction, all the user’s annotations and sequence matches remains the same and especially the intensity value is therefore inaccurate. It is up to your decision if you prefer to retain or to remove such items. (It is generally good idea to apply this processing function prior to any data interpretation.)
5.3. **Smoothing**

You can use this function to smooth the noise which distorts peak shape. There are two different smoothing *Methods* available - *Moving Average* and *Savitzky-Golay*. In general, *Moving Average* is much faster but causes intensity loss for sharp peaks. This method should be preferentially used to smooth high-mass spectra where peaks are broader. On the other hand, *Savitzky-Golay* filter is very slow but intensity loss is lower. This method should be preferentially used to smooth low-mass spectra where peaks are sharp. After setting all the parameters you can see a preview prior to processing your data.

Smoothing tool.

- **Method** - smoothing algorithm.
- **Window size** - smoothing window.
- **Cycles** - number of smoothing repetitions.

➡ **To open smooth tool:**
On Mac OS X press button from the main toolbar, then press button from the panel toolbar. On other platforms press button from the main toolbar. You can choose *Processing → Smooth Spectrum* from the main menu as well.

➡ **To preview smoothed data:**
Specify all the parameters and press *Preview* button. A temporary (red) smoothed spectrum appears in *Spectrum Viewer*.

➡ **To smooth data:**
Specify all the parameters and press *Apply* button.

💡 For *Moving Average* method the **Window size** value should be about 1/3 of the peak width and 1/2 for *Savitzky-Golay* method.

💡 Always check the intensity loss for different peaks along the entire mass range. Use smaller **Window size** if the intensity loss is too strong.

⚠️ **Please note that** at least 2 and 4 data points within the smoothing window are needed for *Moving Average* and *Savitzky-Golay* method respectively. No smoothing is applied if **Window size** is too narrow.

⚠️ **Please note that** current peak list will be removed after applying smoothing.

⚠️ **Please note that** while the spectrum and peak list are changed by smoothing, all the user's annotations and sequence matches remains the same and especially the intensity value is therefore inaccurate. It is up to your decision if you prefer to retain or to remove such items. (It is generally good idea to apply this processing function prior to any data interpretation.)
5.4. Peak Picking

As mentioned earlier in Spectrum Viewer chapter, there is a specific tool to label peaks manually. However, this could be very annoying especially for data-rich spectra like those from FTICR MS or Orbitrap. Fortunately, an algorithm is incorporated into mMass to facilitate automatic peak picking. There are couple of basic steps in the peak picking algorithm:

- Pre-smoothing - if enabled, raw spectrum data are pre-smoothed to eliminate peak noise.
- Searching for local maxima - local maxima are temporarily labeled as potential peaks.
- Filtering by intensity threshold - peaks bellow user intensity threshold are being removed.
- Centroides calculation - peaks centroides are calculated and unresolved peaks are grouped together.
- Filtering by intensity threshold - peaks bellow user intensity threshold are being removed.
- Deisotoping - if enabled, deisotoping is applied to remove isotopes and calculate charges.

To get relevant intensities, for each peak its baseline is calculated. For a flat spectrum with constant noise along entire mass range a global noise level is used as the baseline for all peaks. This approach is very fast but generally not applicable for spectra with uneven baseline. In that cases, peak baselines can be calculated separately for each peak using the noise level from its surroundings using Adaptive threshold. This approach is much slower but can be essential for protein mass spectra.

To open peak picking tool:
On Mac OS X press button from the main toolbar, then press button from the panel toolbar.
On other platforms press button from the main toolbar. You can choose Processing → Peak Picking from the main menu as well.

To label peaks:
Specify all the parameters and press Apply button.
Use pre-smoothing for MALDI-TOF data of any kind.

If pre-smoothing is enabled, don’t forget to check intensity loss for different peaks along the spectrum.

Smoothing significantly decreases number of local maxima, therefore speeds up further processing.

Using *Adaptive threshold* without pre-smoothing can sometimes be very slow.

If smoothing or deisotoping is enabled, don’t forget to check particular settings in corresponding panels.

Please note that while the peak list is changed, all the user’s annotations and sequence matches remain the same and the m/z and intensity values are therefore inaccurate. It is up to your decision if you prefer to retain or to remove such items. (It is generally good idea to apply this processing function prior to any data interpretation.)

5.5. Deisotoping

The main purpose of this tool is to remove unwanted peak isotopes after peak picking. However, in order to find the isotopes a peak charge needs to be calculated, therefore this tool can be used for charge determination as well.

Starting from specified *Maximum charge*, for every peak its isotopes are searched using corresponding isotopic mass shift \((1.00287/\text{abs}(z)) \pm \text{Isotope mass tolerance}\). If at least one isotope is found, parent peak is set as the monoisotopic with current charge state. If no isotope is found, current charge state is decreased \((\text{abs}(z) - 1)\) and search cycle starts again for the same peak.

Because of possible peak overlaps, theoretical isotopic pattern needs to be taken into account. Intensity of every isotope is compared with its theoretical value. If the intensity is matching theoretical value \(\pm \text{Isotope intensity tolerance}\), corresponding isotope is discarded from any subsequent search cycle. If the difference is over tolerance, corresponding isotope will be used as possible parent (monoisotopic) peak in subsequent search cycle. Since *mMass* is mostly used for proteomic data interpretation, the averagine \((C4.9384 \; N1.3577 \; O1.4773 \; S0.0417 \; H7.7583)\) is used to calculate theoretical isotopic patterns.

![Deisotoping tool.](image)

- *Maximum charge* - maximum charge state to be searched.
- *Isotope mass tolerance* - tolerance for mass difference between adjacent isotopes.
- *Isotope intensity tolerance* - tolerance for intensity check between theoretical and measured isotope.
- *Remove isotopes* - all identified isotopes will be removed after processing.
• **Remove unknown** - all unknown peaks will be removed after processing.

➡ **To open deisotoping tool:**
On Mac OS X press button from the main toolbar, then press button from the panel toolbar. On other platforms press button from the main toolbar. You can choose Processing → Deisotoping from the main menu as well.

➡ **To deisotope peaks:**
Specify all the parameters and press Apply button.

➡ **To apply deisotoping automatically after peak picking:**
In Peak Picking tool enable Apply deisotoping.

➡ **To edit peak charge:**
Press in the Peaklist Panel bottom toolbar to show peak editor and click on the peak in the list. Set the new charge and press Replace button.

➡ **To manually set peak as monoisotopic:**
Press in the Peaklist Panel bottom toolbar to show peak editor and click on the peak in the list. Check monoisotopic checkbox and press Replace button.

⚠️ Please note the relationship between Maximum charge and Isotope mass tolerance. Isotope mass tolerance must be lower than $1.00287 \times (1/(z-1) - 1/z)$ to successfully distinguish z and $z-1$ charge.

⚠️ Please note that the combination of averagine intensity distribution and higher Isotope intensity tolerance is generally applicable to wide range of organic compounds but can be very problematic if atoms like Cl, Fe, Hg, Pt etc. are incorporated.

5.6. Utilities

Normalize Data

To compare data between two different instruments it is sometimes necessary to normalize the data to a same intensity level.

➡ **To normalize data:**
Choose Processing → Normalize Data from the main menu.

Swap Data

For ASCII XY and some mzXML documents mMass is unable to determine whether document contains line spectrum points or just centroids of peaks and chooses line spectrum as default. If this decision isn’t correct you can swap the data between line spectrum and peak list.

➡ **To swap data between spectrum and peak list:**
Choose Processing → Swap Data from the main menu.
6. Calibration

In order to re-calibrate your data mMass enables two principal approaches - standard calibration and statistical calibration. In the case of standard calibration any reference list must be selected first and reference values must be assigned to measured peaks. Reference values are assigned automatically using Tolerance value. You can use either Linear or Quadratic fitting to calculate calibration constants. In general, linear fitting is much safer if you want to re-calibrate an m/z range outside of your assigned references. Always see a calibration plot before recalculating your data.

Statistical calibration, sometimes called “self-calibration” is a special method for peptide mass spectra only. It does not need any external reference points since it is based on the fact that monoisotopic masses of peptides are distributed in a very regular way. Decimal fraction of the peptide mass can be calculated with sufficient accuracy just by multiplying their integral part by factor 1.00048. For this method, every peak above 700 m/z limit is recalculated and used as reference mass.

It is sometimes good to use other known peaks as internal calibration standards. Once you have the theoretical masses defined within your annotations and sequence matches, you can use them to re-calibrate your data. Please be so careful while using this feature!

To show calibration tool:
Press button from the main toolbar or choose Processing → Calibration from the main menu.

To show error plot:
Press button from the panel toolbar.
To assign reference masses:
Specify Tolerance value and Units and press Assign button.

To exclude assigned reference from calculation:
Double-click on the reference in the list. Corresponding line turns grey and italic.

To highlight reference mass in spectrum viewer:
Click on the reference in the list and spectrum moves to theoretical m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

To use statistical calibration:
Check Statistical only checkbox. Reference masses and calibration constants are automatically calculated from the current peak list.

To define new reference list:
Choose Libraries → Calibration Masses from the main menu to show up Calibration Masses Library editor. See Libraries chapter for more information.

To re-calibrate data by user annotations:
Right-click on any single annotation or the annotations root in Documents Panel and select Calibrate by Annotations. All the user annotations will be send to Calibration panel. Please note that only those annotations with specified theoretical m/z value can be used.

To re-calibrate data by sequence matches:
Right-click on any single match or sequence title in Documents Panel and select Calibrate by Matches. All the matches will be send to Calibration panel.

Once the calibration is calculated you can apply it to multiple documents. Simply select another document in Documents Panel and press Apply Recent button.

Always check Error plot to see whether the calibration is correct.

In general, use Linear fitting if assigned references do not cover entire mz range you’d like to calibrate.

Single-point calibration can be used for linear fitting as well.

User annotations and sequence matches are re-calibrated as well.

Please note that at least 3 reference mass points are needed for quadratic fitting.

Please note that calibration curve is shown only when Da is selected as the error unit.

Please note that statistical calibration can be used for peptides only! Any non-peptide contamination or modification could have disturbing effect to the calibration.
7. Mass Calculator

Mass Calculator provides a tools for calculation of molecular masses of compounds, generation of ion series and isotopic pattern simulation. Molecular formula can be typed manually or can be sent from various mMass’s tools such as Protein Digest, Peptide Fragmentation etc. Theoretical isotopic profile can be easily overlaid with measured data or stored as a normal document.

To show mass calculator:
Press button from the main toolbar or choose Tools → Mass Calculator from the main menu.

7.1. Formula Syntax

All known elements and their isotopes are defined within mMass’s library and can be used to define any compound. Use the following syntax rules to specify compound formula:

- Use common syntax to type simple formula: C16H32O2.
- Use parenthesis “()” to define groups: CH3(CH2)14COOH
- Use negative “-” values to remove atoms: CH3(CH2)14COOH(NaH-1)
- Use braces “{ }” to define specific isotope of the element: C{13}16H32O2

Please note that using negative values for groups such as C16H32O2(OH)-1 does not work.

7.2. Compound Summary

Compound Summary panel provides a fast preview of the compound defined in Formula field. Composition, Monoisotopic and Average masses are shown.

To show compound summary:
Press button from the main toolbar or choose Tools → Mass Calculator from the main menu to show up Mass Calculator panel. Then press button from the panel toolbar and write your compound into Formula field.

7.3. Ion Series

Using Ion Series panel you can see all the ions for the compound defined in Formula field. Corresponding monoisotopic and average masses are calculated with respect to polarity settings. By default, a proton is used as a “charging agent” but you can specify your own formula or “e” for radical ions.
To show ion series:
Press button from the main toolbar or choose Tools → Mass Calculator from the main menu to show up Mass Calculator panel. Then press button from the panel toolbar and type your compound into Formula field. Ions are generated automatically.

To copy ion series into clipboard:
Click into the ions list and press Command+C (Ctrl+C on MS Windows and Linux).

⚠️ Please note that if your charging agent is about to be removed to make an ion resulting formula must be valid.

7.4. Isotopic Pattern

Isotopic Pattern panel provides a simple tool for generating theoretical isotopic pattern from compound formula. Isotopes are calculated and grouped together with respect to specified Peak width. For each isotope, Gaussian-shape peak is modeled and final profile is calculated as a sum of all the peaks.

Theoretical isotopic profile can be overlaid with measured data and positioned precisely using FWHM, Intensity, Baseline and m/z Shift. You can save theoretical profile as a normal document as well.

To show isotopic pattern:
Press button from the main toolbar or choose Tools → Mass Calculator from the main menu to show up Mass Calculator panel. Then press button from the panel toolbar and type your compound into Formula field.
To change the ion type for current isotopic pattern:
Press button from the panel toolbar and select desired ion type in the list.

To overlay isotopic pattern with measured data:
Press button from the panel toolbar and select desired ion type in the list. Theoretical pattern is then overlaid with measured data. Set Intensity, Baseline and Shift values to position the pattern precisely.

To save current isotopic pattern as regular document:
Press Save button from the panel toolbar.

To collapse pattern panel:
Press the small triangle on the left side of the panel toolbar.

Use the same spectrum manipulation conventions in isotopic pattern window as in the main Spectrum Viewer.

On Mac OS X you can change pattern parameters using a mouse scroll as well.

Use collapsed panel while overlaying theoretical profile and acquired data. This provides you more space to look at your data but all the positioning parameters are still available.
8. Periodic Table of Elements

Periodic Table provides information about the elements. Different groups can be highlighted and element name, mass and isotopic pattern can be shown. For each element its detailed information can be seen on Wikipedia (en.wikipedia.org/wiki/Periodic_table) or *The Photographic Periodic Table of the Elements* (www.periodictable.com) using direct link.

- **To show periodic table:**
 Choose *Tools → Periodic Table* from the main menu.

- **To highlight group of elements:**
 Select the group name from the *Highlight* combo box.

- **To see element name and mass:**
 Press the element button.

- **To see isotopic pattern of element:**
 Select the element in the table and press *Isotopes* button. Element pattern will be shown in *Mass Calculator* tool.

- **To see detailed information about element:**
 Select the element in the table and press *Wikipedia* button. Corresponding wiki page shows up in your web browser.

- **To see element photos:**
 Select the element in the table and press *Photos* button. Corresponding photo page shows up in your web browser.
9. Sequence Tools

mMass provides an internal *Sequence Editor*, which can be used to make any protein or peptide sequence available for other tools. Any modification can be applied either as fixed or variable. *Protein Digest* tool can be used to generate a list of peptides resulting from *in silico* enzymatic or chemical digestion of specified protein sequence. Similarly, *Peptide Fragmentation* tool generates a list of common peptide fragments. In both cases, all possible combinations of variable modifications are calculated and results can be easily compared with measured data. In addition, sequence can be searched for a peptide mass by *Sequence Search* tool to identify any non-specific cleavages.

9.1. Sequence Editor

Internal *Sequence Editor* provides a tool to define protein or peptide sequence to be available for other tools. Sequence can be manually typed, pasted from clipboard or imported from any *mMass* or *FASTA* document. Every input is checked automatically to contain only amino acids defined in *mMass*’s library. Some basic information about the sequence are shown in the panel toolbar and theoretical isotopic pattern can be generated as well. If any modification is set, modified amino acids are shown in red.

To add new sequence:
Press button from the *Documents Panel* bottom toolbar and select New Sequence or choose Sequence → New from the main menu. *Sequence Editor* shows up. Type your sequence manually or use copy/paste.

To import sequence:
Choose Sequence → Import from the main menu and select your sequence file. If more than one sequence are available in the file, a selection dialog shows up. Select one or more sequence and press Import button. *mMass* and *FASTA* documents are currently supported.

To edit sequence:
Double-click on the sequence title in *Documents Panel* and *Sequence Editor* shows up.

To delete sequence:
Click on the sequence title in *Documents Panel* and press Command+Backspace or Delete, or press button from the *Documents Panel* bottom toolbar and choose Delete Sequence.

To generate isotopic pattern from sequence:
In *Sequence Editor* press Pattern button.

If a sequence is pasted from the clipboard all white spaces and numbers are removed automatically. This can be very useful if you copy/paste a sequence from web sites.
If you are using some sequences frequently, save them into mMass document as a sequence library.

Please note that only valid sequences are show in the import dialog and can be imported.

Please note that calculated sequence mass includes all fixed and variable modifications.

9.2. Modifications

In Sequence Modifications panel any post-translational modification can be set to a single amino acid or to selected type. Beside a position, for each modification you can specify whether it should be Fixed or Variable and all possible variants are then calculated in the sequence related tools.

Sequence Modifications.

- Show specific modifications only - show modifications specific for selected amino acid.
- Position - amino acid type and position.
- Modification - modification name and type.

➡ To add modification:
Press button from the Sequence panel toolbar to show up Sequence Modifications. Select amino acid type, position, modification and modification type and press Add button.

➡ To remove modification:
Press button from the Sequence panel toolbar to show up Sequence Modifications. Select desired modification in the list and press Remove button.

➡ To edit modification:
Choose Libraries → Modifications from the main menu to show up Modifications Library editor. See Libraries chapter for more information.

➡ To define new modification:
Choose Libraries → Modifications from the main menu to show up Modifications Library editor. See Libraries chapter for more information.

By default, only specific modifications for selected amino acid are shown, however, all available modifications can be enabled by unchecking Show specific modifications only checkbox.

Please note that multiple modifications of a single residue are not allowed.
9.3. Protein Digest

Many experiments, involving detection of modifications, protein validation etc., apply the specific enzymatic digestion of a protein with a known sequence. Protein Digest panel provides a tool which can be used to generate a list of peptides resulting from in silico enzymatic digestion or in silico chemical digestion of a sequence. The masses of these peptides can then be easily compared with current peak list within a specified tolerance to see any matches. In addition, particular theoretical isotopic pattern can be generated and overlaid with real data to validate matches.

Protein Digest tool.

- **Mass** - mass type to be used for calculations.
- **Max charge** - maximum charge to be calculated.
- **Enzyme** - enzyme to be used to simulate digestion.
- **Miscl.** - maximum number of enzyme miss cleavages.
- **Mass limit** - m/z range for peptides to be calculated.
- **Ignore mods** - ignore modifications in cleavage site.

➡ **To digest protein:**
Double-click on the sequence title in Documents Panel to show up Sequence tools and press Digest button for Protein Digest tool. Specify all the parameters and press Digest button. List of theoretical peptides will be generated.

➡ **To highlight peptide mass in spectrum viewer:**
Click on the peptide and spectrum moves to theoretical m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

➡ **To show isotopic pattern of peptide:**
Double-click on the peptide to show up Mass Calculator panel. Peptide formula appears in Formula field and corresponding ion type is selected automatically. See Mass Calculator chapter for more information.

➡ **To match peptides to peak list:**
Generate theoretical peptides and press Match button in the panel toolbar to show up Match Peptides panel. Matched peptides shows green and bold in the list. See Data Matching chapter for more information.

➡ **To annotate peaks by matched peptides:**
Press Annotate button in the panel toolbar. All matches show up in Documents Panel under current sequence.
To copy peptides into clipboard:
Click into the list and press Command+C (Ctrl+C on MS Windows and Linux). All peptides will be copied. Press Shift+Command+C (Shift+Ctrl+C on MS Windows and Linux) to copy matched peptides only.

All variants are calculated for peptides with variable modification.

Theoretical and matched sequence coverage is shown on the right site of Protein Digest toolbar. This can be used to select the right enzyme for particular protein and mass range.

If you sort the peptides list by the error column you can see all the matched peptides together.

9.4. Peptide Fragmentation

Different types of fragmentation techniques can be used for the validation of a peptide sequence, as well as for the detection, localization and characterization of post-translational modifications. For these types of experiments, common fragments of a peptide sequence can be generated in silico using Peptide Fragmentation tool. Depending on the fragmentation technique used, different fragments can be selected and generated.

Some of the peptide fragments are theoretical only and can be filtered using Filter check box. Even if this filtering is disabled such fragments are shown in grey and italic.

Peptide Fragmentation tool.

- **Mass** - mass type to be used for calculations.
- **Max charge** - maximum charge to be calculated.
- **Ions** - common fragment types to be calculated.
- **Loss** - common losses to be calculated.
- **Internal** - calculate internal fragments.
- **N-ladder** - calculate N-ladder fragments.
- **C-ladder** - calculate C-ladder fragments.
- **Filter** - filter nonsense fragments.

To fragment peptide:
Double-click on the sequence title in Documents Panel to show up Sequence tools and press...
button for Peptide Fragmentation tool. Specify all the parameters and press Fragment button. List of theoretical fragments will be generated.

- **To highlight fragment mass in spectrum viewer:**
 Click on the fragment and spectrum moves to theoretical m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

- **To show isotopic pattern of fragment:**
 Double-click on the fragment to show up Mass Calculator panel. Fragment formula appears in Formula field and corresponding ion type is selected automatically. See Mass Calculator chapter for more information.

- **To match fragments to peak list:**
 Generate theoretical fragments and press Match button in the panel toolbar to show up Match Fragments panel. Matched fragments shows green and bold in the list. See Data Matching chapter for more information.

- **To annotate peaks by matched fragments:**
 Press Annotate button in the panel toolbar. All matches show up in Documents Panel under current sequence.

- **To copy fragments into clipboard:**
 Click into the list and press Command+C (Ctrl+C on MS Windows and Linux). All fragments will be copied. Press Shift+Command+C (Shift+Ctrl+C on MS Windows and Linux) to copy matched fragments only.

- **To filter nonsense fragments:**
 Check Filter checkbox in the panel toolbar.

If you sort the fragments list by the error column you can see all the matched fragments together.

9.5. Data Matching

Both, theoretical peptides and fragments lists can be easily compared with peak list of current document by pressing Match button in corresponding tool. If some of the peptides or fragments are matched successfully you can use them for data recalibration.

![Match tool](image)

Match tool.

- **Tolerance** - mass tolerance for data matching.
- **Da, ppm** - units for tolerance value.
- **Ignore charge** - ignore peak charge while data matching.

- **To match peptides to peak list:**
 Generate theoretical peptides in Protein Digest tool and press Match button in the panel toolbar to
show up Match Peptides panel. Specify the parameters and press Match button. Matched peptides shows green and bold in the peptides list.

- **To match fragments to peak list:**
 Generate theoretical fragments in Peptide Fragmentation tool and press Match button in the panel toolbar to show up Match Fragments panel. Specify the parameters and press Match button. Matched fragments shows in green and bold in the fragments list.

- **To ignore peak charge while data matching:**
 Check Ignore charge checkbox.

- **To re-calibrate data using matches:**
 Press Calibrate button in the panel toolbar to send matched items into Calibration tool. See Calibration chapter for more information. Please be se careful while using this feature!

💡 Use the same spectrum manipulation conventions in the error plot as in the main Spectrum Viewer.

9.6. Sequence Search

Using Sequence Search tool you can search a sequence for any peptide of specified m/z. This tool can be very useful for identification of the peaks resulting from non-specific cleavage of a protein.

![Sequence Search tool](image)

- **Mass** - peptide mass to be searched.
- **Mo, Av** - mass type to be searched.
- **Max charge** - maximum charge to be calculated for peptides.
- **Endings by** - peptide “caps” (e.g. H and OH).
- **Tolerance** - mass tolerance for searching.
- **Da, ppm** - units for tolerance value.

- **To search sequence:**
 Double-click on the sequence title in Documents Panel to show up Sequence tools and press button for Sequence Search tool. Specify all the parameters and press Search button. List of matched peptides will be shown.

- **To highlight peptide mass in spectrum viewer:**
 Click on the peptide and spectrum moves to theoretical m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.
To show isotopic pattern of peptide:
Double-click on the peptide to show up Mass Calculator panel. Peptide formula appears in Formula field and corresponding ion type is selected automatically. See Mass Calculator chapter for more information.
10. Compound Search

Using *Compound Search* tool you can search for any user-specified compound or even a list of compounds in a peak list. Every compound is specified in *mMass*’s library as molecular formula, title and description, therefore both monoisotopic or average masses can be search with any charge. In addition common adducts can be searched automatically as well. All the matched peaks can be annotated and then shown or printed within analysis report.

Compounds Search tool.

- **Compounds** - compounds list to be searched.
- **Formula** - compound formula to be searched.
- **Mass** - mass type to be searched.
- **Max charge** - maximum charge to be calculated.
- **M*** - calculate radical ions.
- **Adducts** - type of adduct to be searched.

➡ To search for list of compounds:
Press button from the main toolbar or choose Tools → Compounds Search from the main menu and select tool in the panel toolbar. Select Compounds list name, set the parameters and press Generate button. Then press Match button to show up Match Compounds tool.

➡ To search for specified formula:
Press button from the main toolbar or choose Tools → Compounds Search from the main menu and select tool in the panel toolbar. Type compound Formula, set the parameters and press Generate button. Then press Match button to show up Match Compounds tool. See Mass Calculator chapter for more information about formula syntax.

➡ To highlight compound mass in spectrum viewer:
Click on the compound and spectrum moves to theoretical m/z value. Small red arrow shows up on m/z axis of the spectrum. Current zoom range remains the same.

➡ To show isotopic pattern of compound:
Double-click on the compound to show up Mass Calculator panel. Compound formula appears in Formula field and corresponding ion type is selected automatically. See Mass Calculator chapter for more information.
To define a new list of compounds:
Choose Libraries → Compounds from the main menu to show up Compounds Library editor. See Libraries chapter for more information.

To match compounds to peak list:
Generate theoretical compounds and press Match button in the panel toolbar to show up Match Compounds panel. Matched compounds shows in green and bold.

![Compounds matching.](image)

- **Tolerance** - mass tolerance for data matching.
- **Da, ppm** - units for tolerance value.
- **Ignore charge** - ignore peak charge while data matching.

To annotate peaks by matched compounds:
Press Annotate button in panel toolbar. All matches show up in Documents Panel under Annotations.

To ignore peak charge while data matching:
Check Ignore charge checkbox.

To re-calibrate data using matches:
Press Calibrate button in the panel toolbar to send matched items into Calibration tool. See Calibration chapter for more information. Please be se careful while using this feature!

To copy compounds into clipboard:
Click into the list and press Command+C (Ctrl+C on MS Windows and Linux). All compounds will be copied. Press Shift+Command+C (Shift+Ctrl+C on MS Windows and Linux) to copy matched compounds only.

💡 If you sort the list by the error column you can see all the matched peptides together.

💡 Use the same spectrum manipulation conventions in the error plot as in the main Spectrum Viewer.
11. Mascot Search

mMass provides an interface that allows data to be directly sent to the three main tools available on Mascot website (http://www.matrixscience.com): Peptide Mass Fingerprint, Sequence Query and MS/MS Ion Search. When Search button is pressed, temporary HTML page is generated containing all the parameters and using JavaScript, the page is automatically sent to selected server. Please see the Mascot website for more information about the tools and the form fields.

![Mascot's Peptide Mass Fingerprint search tool.](image)

- **To show peptide mass fingerprint tool:**
 Press button from the main toolbar to show Mascot tools and press button from the panel toolbar or choose Tools → Mascot Peptide Mass Fingerprint from the main menu.

- **To show MS/MS ion search tool:**
 Press button from the main toolbar to show Mascot tools and press button from the panel toolbar or choose Tools → Mascot MS/MS Ion Search from the main menu.

- **To show sequence query tool:**
 Press button from the main toolbar to show Mascot tools and press button from the panel toolbar or choose Tools → Mascot Sequence Query from the main menu.

- **To change server:**
 Select the Server in the panel toolbar.

- **To send data to server:**
 Specify all the parameters and press Send button in the panel toolbar. HTML page will be generated and sent to specified server. Results shows up in your default web browser.

- **To define new server:**
 Choose Libraries → Mascot Servers from the main menu to show up Mascot Servers Library editor. See Libraries chapter for more information.
To specify peak list or query:
Press [P] from the panel toolbar and type your query manually or use Peak list selection.

Please note that while changing server, most of the form fields changed as well. Check if the form is filled correctly.
12. ProFound Search

mMass provides an interface that allows data to be directly sent to *ProFound* search tool available on a website of Professor Brian T. Chait group (http://prowl.rockefeller.edu). When Search button is pressed, temporary HTML page is generated containing all the parameters and using *JavaScript*, the page is automatically sent to *ProFound* server. Please see the *ProFound* website for more information about the tool and the form fields.

![ProFound search tool](image)

To show ProFound tool:
Press button from the main toolbar or choose Tools → ProFound from the main menu.

To send data to server:
Specify all the parameters and press Send button in the panel toolbar. HTML page will be generated and sent to ProFound server. Results shows up in your default web browser.
13. Peak Differences

Interpretation of mass spectra typically involves a seemingly never-ending check of the differences between all peaks in a spectrum. However, Peak Differences tool is able to simply generate a table of all the differences between the peaks in the peak list. This table can then be used to automatically compare, within a specified tolerance, each difference with the respective masses of all amino acids, calculated dipeptides or specified m/z value. Peak Differences tool therefore provides a useful utility for de novo peptide sequencing or PTM search.

- **Difference** - user defined m/z difference to searched.
- **Amino acids** - all available amino acids will be searched.
- **Dipeptides** - all calculated dipeptides will be searched.
- **Mass** - mass type to be used for amino acids and dipeptides calculation.
- **Tolerance** - mass tolerance for searching.

➡ **To show peak differences tool:**
Press button from the main toolbar or choose Tools → Peak Differences from the main menu.

➡ **To search:**
Specify all the parameters and press Search button from the panel toolbar. Click on any highlighted differences to see corresponding matches.

💡 If the specified mass is matched, corresponding difference turns green. If at least one amino acid is matched, corresponding difference turns dark blue. If at least one dipeptide is matched, corresponding difference turns light blue.

⚠️ Please note that the differences which does not make sense for current mass range (for specified Difference, Amino acids and Dipeptides) are not shown for better readability.
14. Libraries

14.1. Modifications

To show modification library editor:
Choose Libraries → Modifications from the main menu.

To add modification:
Open Modifications Library editor, specify all the modification parameters and press Add button.

To edit modification:
Open Modifications Library editor, select the modification you’d like to edit, change the parameters and press Add button. If the Name remains the same you will be asked to Replace modification definition.

To rename modification:
Open Modifications Library editor, select the modification you’d like to rename, change the Name and press Add button. New modification will be added and the old one can be deleted.

To delete modification:
Open Modifications Library editor, select the modification you’d like to delete and press Delete button. It is not possible to delete modification which is used in one of the opened documents.
See Mass Calculator chapter for more information about formula syntax.

Monoisotopic and average masses are calculated automatically as you type the formula.

If you open a document with undefined modification this modification is added into your library automatically, however, the Amino specificity is set to ACDEFGHIKLMNPQRSTVWY.

Please note that the modification name must be unique for each modification.

14.2. Enzymes

![Enzymes Library editor](image)

- **Name** - unique enzyme name.
- **Expression** - enzyme regular expression.
- **C-term formula** - formula to be added at new C-terminus.
- **N-term formula** - formula to be added at new N-terminus.
- **Allow modification before cut** - allow modifications before cleavage site.
- **Allow modification after cut** - allow modifications after cleavage site.

➡ To show enzymes library editor:
Choose Libraries → Enzymes from the main menu.

➡ To add enzyme:
Open Enzymes Library editor, specify all the enzyme parameters and press Add button.

➡ To edit enzyme:
Open Enzymes Library editor, select the enzyme you’d like to edit, change the parameters and press Add button. If the Name remains the same you will be asked to Replace enzyme definition.

➡ To rename enzyme:
Open Enzymes Library editor, select the enzyme you’d like to rename, change the Name and press Add button. New enzyme will be added and the old one can be deleted.
To delete enzyme:
Open Enzymes Library editor, select the enzyme you’d like to delete and press Delete button.

The enzyme expression uses regular expression syntax where both, amino acids before and after cleavage must be defined. For example \([KR][A-Z]\) for the Trypsin/P, where \([KR]\) means that lysine or arginine must be before cleavage and \([A-Z]\) means that any amino acid (i.e. character in the sequence) is allowed after cleavage. To block any amino acid use ^ like in the regular Trypsin \([KR[^P]\). See the http://docs.python.org/howto/regex.html#regex-howto for more information about regular expression syntax.

See Mass calculator chapter for more information about formula syntax.

Please note that the enzyme name must be unique for each enzyme.

14.3. Compounds

To show compounds library editor:
Choose Libraries → Compounds from the main menu.

To add new compounds list:
Open Compounds Library editor and press New button on top of the panel. Type the name and press OK button.
To rename compounds list:
Open Compounds Library editor, select the list you’d like to rename and press Rename button on top of the panel. Type the name and press OK button.

To delete compounds list:
Open Compounds Library editor, select the list you’d like to delete and press Delete button on top of the panel.

To add compound:
Open Compounds Library editor and select the list for the compound. Specify all the compound parameters and press Add button down on the panel.

To edit compound:
Open Compounds Library editor and select the list containing the compound you’d like to edit. Change the compound parameters and press Add button down on the panel.

To rename compounds:
Open Compounds Library editor and select the list containing the compound you’d like to rename. Change the Name and press Add button. New compound will be added and the old one can be deleted.

To delete compound:
Open Compounds Library editor, select the list containing the compound you’d like to delete and press Delete button down on the panel.

See Mass Calculator chapter for more information about formula syntax.

Monoisotopic and average masses are calculated automatically as you type the formula.

Please note that the compound name must be unique for each compound.

14.4. Calibration Masses

Calibration Masses editor.

- Description - calibrant name.
- Mass - reference mass.
To show calibration masses library editor:
Choose Libraries → Calibration Masses from the main menu.

To add new reference list:
Open Calibration Masses Library editor and press New button on top of the panel. Type the name and press OK button.

To rename reference list:
Open Calibration Masses Library editor, select the list you’d like to rename and press Rename button on top of the panel. Type the name and press OK button.

To delete reference list:
Open Calibration Masses Library editor, select the list you’d like to delete and press Delete button on top of the panel. Type the name and press OK button.

To add calibration mass:
Open Calibration Masses Library editor and select the list for the calibration mass. Specify all the calibration mass parameters and press Add button down on the panel.

To edit calibration mass:
Open Calibration Masses Library editor and select the list containing the calibration mass you’d like to edit. Change the calibration mass parameters and press Add button down on the panel.

To rename calibration mass:
Open Calibration Masses Library editor and select the list containing the calibration mass you’d like to rename. Change the Name and press Add button. New calibration mass will be added and the old one can be deleted.

To delete calibration mass:
Open Calibration Masses Library editor, select the list containing the calibration mass you’d like to delete and press Delete button down on the panel.

14.5. Mascot Servers

- **Title** - server title.
- **Host name** - IP address or domain.
- **Mascot path** - path to the Mascot’s main folder (“/” or “/mascot/” etc.).
• *Search* - path to the main search script (relative to the Mascot’s main folder).
• *Results* - path to the results viewer script (relative to the Mascot’s main folder).
• *Export* - path to the results export script (relative to the Mascot’s main folder).
• *Params* - path to the form parameters values (relative to the Mascot’s main folder).

➡ **To show mascot servers library editor:**
Choose Libraries → Mascot Servers from the main menu.

➡ **To add server:**
Open Mascot Servers Library editor, specify all the server parameters and press Add button.

➡ **To edit server:**
Open Mascot Servers Library editor, select the server you’d like to edit, change the parameters and press Add button. If the Title remains the same you will be asked to Replace server definition.

➡ **To rename server:**
Open Mascot Servers Library editor, select the server you’d like to rename, change the Title and press Add button. New server will be added and the old one can be deleted.

➡ **To delete server:**
Open Mascot Servers Library editor, select the server you’d like to delete and press Delete button.

14.6. Presets

![Presets Library editor.](image)

• *Name* - presets name.
• *Category* - presets category.

➡ **To show presets library editor:**
Choose Libraries → Presets from the main menu.

➡ **To rename presets:**
Open Presets Library editor, select the presets you’d like to rename, change the Name and press Rename button.

➡ **To delete server:**
Open Presets Library editor, select the presets you’d like to delete and press Delete button.
15. Appendix

15.1. Elements

Configuration file "elements.xml" contains all the elements available for formula definitions.

```xml
<?xml version="1.0" encoding="utf-8" ?>
<mspyElements version="1.0">
  <element symbol="Ac" name="Actinium" atomicNumber="89">
    <mass monoisotopic="227.027747" average="227.027747" />
    <isotopes>
      <isotope massNumber="227" mass="227.027747" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="Ag" name="Silver" atomicNumber="47">
    <mass monoisotopic="106.905093" average="107.868150697" />
    <isotopes>
      <isotope massNumber="107" mass="106.905093" abundance="0.51839" />
      <isotope massNumber="109" mass="108.904756" abundance="0.48161" />
    </isotopes>
  </element>
  <element symbol="Al" name="Aluminium" atomicNumber="13">
    <mass monoisotopic="26.98153844" average="26.98153844" />
    <isotopes>
      <isotope massNumber="27" mass="26.98153844" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="Am" name="Americium" atomicNumber="95">
    <mass monoisotopic="243.0613727" average="243.0613727" />
    <isotopes>
      <isotope massNumber="241" mass="241.0568229" abundance="0.0" />
      <isotope massNumber="243" mass="243.0613727" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="Ar" name="Argon" atomicNumber="18">
    <mass monoisotopic="39.962383123" average="39.9476767176" />
    <isotopes>
      <isotope massNumber="36" mass="35.96754628" abundance="0.003365" />
      <isotope massNumber="38" mass="37.9627322" abundance="0.000632" />
      <isotope massNumber="40" mass="39.962383123" abundance="0.996003" />
    </isotopes>
  </element>
  <element symbol="As" name="Arsenic" atomicNumber="33">
    <mass monoisotopic="74.9215964" average="74.9215964" />
    <isotopes>
      <isotope massNumber="75" mass="74.9215964" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="At" name="Astatine" atomicNumber="85">
    <mass monoisotopic="210.987481" average="210.987481" />
    <isotopes>
      <isotope massNumber="210" mass="209.987131" abundance="0.0" />
      <isotope massNumber="211" mass="210.987481" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="Au" name="Gold" atomicNumber="79">
    <mass monoisotopic="196.966552" average="196.966552" />
    <isotopes>
      <isotope massNumber="197" mass="196.966552" abundance="1.0" />
    </isotopes>
  </element>
  <element symbol="B" name="Boron" atomicNumber="5">
    <mass monoisotopic="11.0093055" average="10.8110281685" />
    <isotopes>
      <isotope massNumber="10" mass="10.012937" abundance="0.199" />
      <isotope massNumber="11" mass="11.0093055" abundance="0.801" />
    </isotopes>
  </element>
</mspyElements>
```
<element symbol="Db" name="Dubnium" atomicNumber="105">
 <mass monoisotopic="262.11415" average="262.11415" />
 <isotopes>
 <isotope massNumber="262" mass="262.11415" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Dy" name="Dysprosium" atomicNumber="66">
 <mass monoisotopic="163.929171" average="162.497030039" />
 <isotopes>
 <isotope massNumber="156" mass="155.924278" abundance="0.0006" />
 <isotope massNumber="158" mass="157.924405" abundance="0.001" />
 <isotope massNumber="160" mass="159.925194" abundance="0.0234" />
 <isotope massNumber="161" mass="160.92693" abundance="0.1891" />
 <isotope massNumber="162" mass="161.926795" abundance="0.2551" />
 <isotope massNumber="163" mass="162.928728" abundance="0.249" />
 <isotope massNumber="164" mass="163.929171" abundance="0.2818" />
 </isotopes>
</element>

<element symbol="Er" name="Erbium" atomicNumber="68">
 <mass monoisotopic="165.93029" average="167.256301073" />
 <isotopes>
 <isotope massNumber="162" mass="161.928775" abundance="0.0014" />
 <isotope massNumber="164" mass="163.929197" abundance="0.0161" />
 <isotope massNumber="166" mass="165.93029" abundance="0.3361" />
 <isotope massNumber="167" mass="166.932045" abundance="0.2293" />
 <isotope massNumber="168" mass="167.932368" abundance="0.2678" />
 <isotope massNumber="170" mass="169.93546" abundance="0.1493" />
 </isotopes>
</element>

<element symbol="Es" name="Einsteinium" atomicNumber="99">
 <mass monoisotopic="252.08297" average="252.08297" />
 <isotopes>
 <isotope massNumber="252" mass="252.08297" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Eu" name="Europium" atomicNumber="63">
 <mass monoisotopic="152.921226" average="151.964366222" />
 <isotopes>
 <isotope massNumber="151" mass="150.919846" abundance="0.4781" />
 <isotope massNumber="153" mass="152.921226" abundance="0.5219" />
 </isotopes>
</element>

<element symbol="F" name="Fluorine" atomicNumber="9">
 <mass monoisotopic="18.9984032" average="18.9984032" />
 <isotopes>
 <isotope massNumber="19" mass="18.9984032" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Fe" name="Iron" atomicNumber="26">
 <mass monoisotopic="55.9349421" average="55.845150209" />
 <isotopes>
 <isotope massNumber="54" mass="53.9396148" abundance="0.05845" />
 <isotope massNumber="56" mass="55.9349421" abundance="0.91754" />
 <isotope massNumber="57" mass="56.9353987" abundance="0.02119" />
 <isotope massNumber="58" mass="57.9332805" abundance="0.00282" />
 </isotopes>
</element>

<element symbol="Fm" name="Fermium" atomicNumber="100">
 <mass monoisotopic="257.095099" average="257.095099" />
 <isotopes>
 <isotope massNumber="257" mass="257.095099" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Fr" name="Francium" atomicNumber="87">
 <mass monoisotopic="223.0197307" average="223.0197307" />
 <isotopes>
 <isotope massNumber="223" mass="223.0197307" abundance="1.0" />
 </isotopes>
</element>
<element symbol="Ga" name="Gallium" atomicNumber="31">
 <mass monoisotopic="68.925581" average="69.7230715461" />
 <isotopes>
 <isotope massNumber="69" mass="68.925581" abundance="0.60108" />
 <isotope massNumber="71" mass="70.924705" abundance="0.39892" />
 </isotopes>
</element>

<element symbol="Gd" name="Gadolinium" atomicNumber="64">
 <mass monoisotopic="157.924101" average="157.252119251" />
 <isotopes>
 <isotope massNumber="152" mass="151.919788" abundance="0.002" />
 <isotope massNumber="154" mass="153.920862" abundance="0.0218" />
 <isotope massNumber="155" mass="154.922619" abundance="0.148" />
 <isotope massNumber="156" mass="155.92212" abundance="0.2047" />
 <isotope massNumber="157" mass="156.923957" abundance="0.1565" />
 <isotope massNumber="158" mass="157.924101" abundance="0.2484" />
 <isotope massNumber="160" mass="159.927051" abundance="0.2186" />
 </isotopes>
</element>

<element symbol="Ge" name="Germanium" atomicNumber="32">
 <mass monoisotopic="73.9211782" average="72.6127591769" />
 <isotopes>
 <isotope massNumber="70" mass="69.9242504" abundance="0.2084" />
 <isotope massNumber="72" mass="71.9220762" abundance="0.2754" />
 <isotope massNumber="73" mass="72.9234594" abundance="0.0773" />
 <isotope massNumber="74" mass="73.9211782" abundance="0.3628" />
 <isotope massNumber="76" mass="75.9214027" abundance="0.0761" />
 </isotopes>
</element>

<element symbol="H" name="Hydrogen" atomicNumber="1">
 <mass monoisotopic="1.0078250321" average="1.00794075393" />
 <isotopes>
 <isotope massNumber="1" mass="1.0078250321" abundance="0.999885" />
 <isotope massNumber="2" mass="2.014101778" abundance="0.000115" />
 <isotope massNumber="3" mass="3.0160492675" abundance="0.0" />
 </isotopes>
</element>

<element symbol="He" name="Helium" atomicNumber="2">
 <mass monoisotopic="4.0026032497" average="4.00260189809" />
 <isotopes>
 <isotope massNumber="3" mass="3.0160293097" abundance="1.37e-06" />
 <isotope massNumber="4" mass="4.0026032497" abundance="0.99999863" />
 </isotopes>
</element>

<element symbol="Hf" name="Hafnium" atomicNumber="72">
 <mass monoisotopic="179.9465488" average="178.484970878" />
 <isotopes>
 <isotope massNumber="174" mass="173.94004" abundance="0.0016" />
 <isotope massNumber="176" mass="175.9414018" abundance="0.0526" />
 <isotope massNumber="177" mass="176.94322" abundance="0.186" />
 <isotope massNumber="178" mass="177.9436977" abundance="0.2728" />
 <isotope massNumber="179" mass="178.9458151" abundance="0.1362" />
 <isotope massNumber="180" mass="179.9465488" abundance="0.3508" />
 </isotopes>
</element>

<element symbol="Hg" name="Mercury" atomicNumber="80">
 <mass monoisotopic="201.970626" average="200.599149363" />
 <isotopes>
 <isotope massNumber="196" mass="195.965815" abundance="0.0015" />
 <isotope massNumber="198" mass="197.966752" abundance="0.0997" />
 <isotope massNumber="199" mass="198.968262" abundance="0.1687" />
 <isotope massNumber="200" mass="199.968369" abundance="0.231" />
 <isotope massNumber="201" mass="200.970285" abundance="0.1318" />
 <isotope massNumber="202" mass="201.970626" abundance="0.2986" />
 <isotope massNumber="204" mass="203.973476" abundance="0.0687" />
 </isotopes>
</element>

<element symbol="Ho" name="Holmium" atomicNumber="67">
 <mass monoisotopic="164.930319" average="164.930319" />
</element>
<element symbol="I" name="Iodine" atomicNumber="53">
 <mass monoisotopic="126.904468" average="126.904468" />
 <isotopes>
 <isotope massNumber="127" mass="126.904468" abundance="1.0" />
 </isotopes>
</element>

<element symbol="In" name="Indium" atomicNumber="49">
 <mass monoisotopic="114.903878" average="114.810805851" />
 <isotopes>
 <isotope massNumber="113" mass="112.904061" abundance="0.0429" />
 <isotope massNumber="115" mass="114.903878" abundance="0.9571" />
 </isotopes>
</element>

<element symbol="Ir" name="Iridium" atomicNumber="77">
 <mass monoisotopic="192.962924" average="192.216053791" />
 <isotopes>
 <isotope massNumber="191" mass="190.960591" abundance="0.373" />
 <isotope massNumber="193" mass="192.962924" abundance="0.627" />
 </isotopes>
</element>

<element symbol="K" name="Potassium" atomicNumber="19">
 <mass monoisotopic="38.9637069" average="39.0983013438" />
 <isotopes>
 <isotope massNumber="39" mass="38.9637069" abundance="0.932581" />
 <isotope massNumber="40" mass="39.96399867" abundance="0.000117" />
 <isotope massNumber="41" mass="40.96182597" abundance="0.067302" />
 </isotopes>
</element>

<element symbol="Kr" name="Krypton" atomicNumber="36">
 <mass monoisotopic="83.911507" average="83.7993250844" />
 <isotopes>
 <isotope massNumber="78" mass="77.920386" abundance="0.0035" />
 <isotope massNumber="80" mass="79.916378" abundance="0.0228" />
 <isotope massNumber="82" mass="81.9134846" abundance="0.1158" />
 <isotope massNumber="84" mass="83.91507107" abundance="0.57" />
 <isotope massNumber="86" mass="85.9106103" abundance="0.173" />
 </isotopes>
</element>

<element symbol="La" name="Lanthanum" atomicNumber="57">
 <mass monoisotopic="138.906348" average="138.905448683" />
 <isotopes>
 <isotope massNumber="138" mass="137.907187" abundance="0.0009" />
 <isotope massNumber="139" mass="138.906348" abundance="0.9991" />
 </isotopes>
</element>

<element symbol="Li" name="Lithium" atomicNumber="3">
 <mass monoisotopic="7.016004" average="6.94003707897" />
 <isotopes>
 <isotope massNumber="6" mass="6.0151223" abundance="0.0759" />
 <isotope massNumber="7" mass="7.016004" abundance="0.9241" />
 </isotopes>
</element>

<element symbol="Lr" name="Lawrencium" atomicNumber="103">
 <mass monoisotopic="262.10969" average="262.10969" />
 <isotopes>
 <isotope massNumber="262" mass="262.10969" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Lu" name="Lutetium" atomicNumber="71">
 <mass monoisotopic="174.9407679" average="174.966717486" />
 <isotopes>
 <isotope massNumber="175" mass="174.9407679" abundance="0.9741" />
 <isotope massNumber="176" mass="175.9426824" abundance="0.0259" />
 </isotopes>
</element>
<element symbol="Ne" name="Neon" atomicNumber="10">
 <mass monoisotopic="19.9924401759" average="20.180046417" />
 <isotopes>
 <isotope massNumber="20" mass="19.9924401759" abundance="0.9048" />
 <isotope massNumber="21" mass="20.99384674" abundance="0.0027" />
 <isotope massNumber="22" mass="21.99138551" abundance="0.0925" />
 </isotopes>
</element>

<element symbol="Ni" name="Nickel" atomicNumber="28">
 <mass monoisotopic="57.9353479" average="58.6933562856" />
 <isotopes>
 <isotope massNumber="58" mass="57.9353479" abundance="0.680769" />
 <isotope massNumber="60" mass="59.9307906" abundance="0.262231" />
 <isotope massNumber="61" mass="60.9310604" abundance="0.011399" />
 <isotope massNumber="62" mass="61.9283488" abundance="0.036345" />
 <isotope massNumber="64" mass="63.9279696" abundance="0.009256" />
 </isotopes>
</element>

<element symbol="No" name="Nobelium" atomicNumber="102">
 <mass monoisotopic="259.10102" average="259.10102" />
 <isotopes>
 <isotope massNumber="259" mass="259.10102" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Np" name="Neptunium" atomicNumber="93">
 <mass monoisotopic="237.0481673" average="237.0481673" />
 <isotopes>
 <isotope massNumber="237" mass="237.0481673" abundance="1.0" />
 <isotope massNumber="239" mass="239.0529314" abundance="0.0" />
 </isotopes>
</element>

<element symbol="O" name="Oxygen" atomicNumber="8">
 <mass monoisotopic="15.9949146221" average="15.9994049284" />
 <isotopes>
 <isotope massNumber="16" mass="15.9949146221" abundance="0.99757" />
 <isotope massNumber="17" mass="16.9991315" abundance="0.00038" />
 <isotope massNumber="18" mass="17.9991604" abundance="0.00205" />
 </isotopes>
</element>

<element symbol="Os" name="Osmium" atomicNumber="76">
 <mass monoisotopic="191.961479" average="190.224861062" />
 <isotopes>
 <isotope massNumber="184" mass="183.952491" abundance="0.0002" />
 <isotope massNumber="186" mass="185.953838" abundance="0.0159" />
 <isotope massNumber="187" mass="186.955749" abundance="0.0196" />
 <isotope massNumber="188" mass="187.955836" abundance="0.1324" />
 <isotope massNumber="189" mass="188.9581449" abundance="0.1615" />
 <isotope massNumber="190" mass="189.958445" abundance="0.2626" />
 <isotope massNumber="192" mass="191.961479" abundance="0.4078" />
 </isotopes>
</element>

<element symbol="P" name="Phosphorus" atomicNumber="15">
 <mass monoisotopic="30.97376151" average="30.97376151" />
 <isotopes>
 <isotope massNumber="31" mass="30.97376151" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Pa" name="Protactinium" atomicNumber="91">
 <mass monoisotopic="231.0358789" average="231.0358789" />
 <isotopes>
 <isotope massNumber="231" mass="231.0358789" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Pb" name="Lead" atomicNumber="82">
 <mass monoisotopic="207.976636" average="207.21689158" />
 <isotopes>
 <isotope massNumber="204" mass="203.973029" abundance="0.014" />
 <isotope massNumber="206" mass="205.97744" abundance="0.241" />
 <isotope massNumber="207" mass="206.975881" abundance="0.221" />
 <isotope massNumber="208" mass="207.976636" abundance="0.524" />
 </isotopes>
</element>
<element symbol="Re" name="Rhenium" atomicNumber="75">
 <mass monoisotopic="186.9557508" average="186.206705433" />
 <isotopes>
 <isotope massNumber="185" mass="184.9529557" abundance="0.374" />
 <isotope massNumber="187" mass="186.9557508" abundance="0.626" />
 </isotopes>
</element>

<element symbol="Rf" name="Rutherfordium" atomicNumber="104">
 <mass monoisotopic="261.10875" average="261.10875" />
 <isotopes>
 <isotope massNumber="261" mass="261.10875" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Rh" name="Rhodium" atomicNumber="45">
 <mass monoisotopic="102.905504" average="102.905504" />
 <isotopes>
 <isotope massNumber="103" mass="102.905504" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Rn" name="Radon" atomicNumber="86">
 <mass monoisotopic="222.0175705" average="222.0175705" />
 <isotopes>
 <isotope massNumber="211" mass="210.9908585" abundance="0.0" />
 <isotope massNumber="220" mass="220.0113841" abundance="0.0" />
 <isotope massNumber="222" mass="222.0175705" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Ru" name="Ruthenium" atomicNumber="44">
 <mass monoisotopic="101.9043495" average="101.06494499" />
 <isotopes>
 <isotope massNumber="100" mass="99.9042197" abundance="0.126" />
 <isotope massNumber="101" mass="100.9055822" abundance="0.1706" />
 <isotope massNumber="102" mass="101.9043495" abundance="0.3155" />
 <isotope massNumber="104" mass="103.90543" abundance="0.1862" />
 <isotope massNumber="96" mass="95.907598" abundance="0.0554" />
 <isotope massNumber="98" mass="97.905287" abundance="0.0187" />
 <isotope massNumber="99" mass="98.9059393" abundance="0.1276" />
 </isotopes>
</element>

<element symbol="S" name="Sulfur" atomicNumber="16">
 <mass monoisotopic="31.97207069" average="32.0660846938" />
 <isotopes>
 <isotope massNumber="32" mass="31.97207069" abundance="0.9493" />
 <isotope massNumber="33" mass="32.9714585" abundance="0.0076" />
 <isotope massNumber="34" mass="33.96786683" abundance="0.0429" />
 <isotope massNumber="36" mass="35.96708088" abundance="0.0002" />
 <isotope massNumber="38" mass="37.96650999" abundance="0.0002" />
 <isotope massNumber="40" mass="39.96603899" abundance="0.0002" />
 </isotopes>
</element>

<element symbol="Sb" name="Antimony" atomicNumber="51">
 <mass monoisotopic="120.903818" average="121.759788176" />
 <isotopes>
 <isotope massNumber="121" mass="120.903818" abundance="0.5721" />
 <isotope massNumber="123" mass="122.9042157" abundance="0.4279" />
 </isotopes>
</element>

<element symbol="Sc" name="Scandium" atomicNumber="21">
 <mass monoisotopic="44.9559102" average="44.9559102" />
 <isotopes>
 <isotope massNumber="45" mass="44.9559102" abundance="1.0" />
 </isotopes>
</element>

<element symbol="Se" name="Selenium" atomicNumber="34">
 <mass monoisotopic="79.9165218" average="78.95938873" />
 <isotopes>
 <isotope massNumber="74" mass="73.9224766" abundance="0.0089" />
 <isotope massNumber="76" mass="75.9192141" abundance="0.0937" />
 <isotope massNumber="77" mass="76.9199146" abundance="0.0763" />
 <isotope massNumber="78" mass="77.9173805" abundance="0.2377" />
 <isotope massNumber="80" mass="79.9165218" abundance="0.4961" />
 </isotopes>
</element>
<isotope massNumber="82" mass="81.9167" abundance="0.0873" />
</isotopes>
</element>
<element symbol="Se" name="Seaborgium" atomicNumber="106">
<mass monoisotopic="266.12193" average="266.12193" />
<isotopes>
<isotope massNumber="266" mass="266.12193" abundance="1.0" />
</isotopes>
</element>
<element symbol="Si" name="Silicon" atomicNumber="14">
<mass monoisotopic="27.9769265327" average="28.0854128453" />
<isotopes>
<isotope massNumber="28" mass="27.9769265327" abundance="0.922297" />
<isotope massNumber="29" mass="28.97649472" abundance="0.046832" />
<isotope massNumber="30" mass="29.97377022" abundance="0.030872" />
</isotopes>
</element>
<element symbol="Sm" name="Samarium" atomicNumber="62">
<mass monoisotopic="151.919728" average="150.366344004" />
<isotopes>
<isotope massNumber="144" mass="143.911995" abundance="0.0307" />
<isotope massNumber="147" mass="146.914893" abundance="0.1499" />
<isotope massNumber="148" mass="147.914818" abundance="0.1124" />
<isotope massNumber="149" mass="148.91718" abundance="0.1382" />
<isotope massNumber="150" mass="149.917271" abundance="0.0738" />
<isotope massNumber="152" mass="151.919728" abundance="0.2675" />
<isotope massNumber="154" mass="153.92205" abundance="0.2275" />
</isotopes>
</element>
<element symbol="Sn" name="Tin" atomicNumber="50">
<mass monoisotopic="119.9021966" average="118.710110491" />
<isotopes>
<isotope massNumber="112" mass="111.904821" abundance="0.0097" />
<isotope massNumber="114" mass="113.902782" abundance="0.0066" />
<isotope massNumber="115" mass="114.903346" abundance="0.0034" />
<isotope massNumber="116" mass="115.901744" abundance="0.1454" />
<isotope massNumber="117" mass="116.902954" abundance="0.0768" />
<isotope massNumber="118" mass="117.901606" abundance="0.2422" />
<isotope massNumber="119" mass="118.903309" abundance="0.0859" />
<isotope massNumber="120" mass="119.9021966" abundance="0.3258" />
<isotope massNumber="122" mass="121.9034401" abundance="0.0463" />
<isotope massNumber="124" mass="123.9052746" abundance="0.0579" />
</isotopes>
</element>
<element symbol="Sr" name="Strontium" atomicNumber="38">
<mass monoisotopic="87.9056143" average="87.6166462926" />
<isotopes>
<isotope massNumber="84" mass="83.913425" abundance="0.0056" />
<isotope massNumber="86" mass="85.902624" abundance="0.0986" />
<isotope massNumber="87" mass="86.908793" abundance="0.07" />
<isotope massNumber="88" mass="87.9056143" abundance="0.8258" />
</isotopes>
</element>
<element symbol="Ta" name="Tantalum" atomicNumber="73">
<mass monoisotopic="180.947796" average="180.94785936" />
<isotopes>
<isotope massNumber="180" mass="179.947466" abundance="0.00012" />
<isotope massNumber="181" mass="180.947996" abundance="0.99988" />
</isotopes>
</element>
<element symbol="Tb" name="Terbium" atomicNumber="65">
<mass monoisotopic="158.925343" average="158.925343" />
<isotopes>
<isotope massNumber="159" mass="158.925343" abundance="1.0" />
</isotopes>
</element>
<element symbol="Tc" name="Technetium" atomicNumber="43">
<mass monoisotopic="97.907216" average="97.907216" />
<isotopes>
<isotope massNumber="97" mass="96.906365" abundance="0.0" />
</isotopes>
15.2. Amino acids

Configuration file “aminoacids.xml” contains all the amino acids available for sequence editing.

<?xml version="1.0" encoding="utf-8" ?>
<mspyAminoacids version="1.0">
 <aminoacid symbol="A" name="Alanine" abbr="Ala" formula="C3H5NO" />
 <aminoacid symbol="C" name="Cysteine" abbr="Cys" formula="C3H5NOS" />
 <aminoacid symbol="D" name="Aspartic Acid" abbr="Asp" formula="C4H5NO3" />
 <aminoacid symbol="E" name="Glutamic Acid" abbr="Glu" formula="C5H7NO3" />
</mspyAminoacids>
15.3. Fragments

Configuration file “fragments.xml” contains all the fragments definitions for peptides fragmentation.

```xml
<mspyFragments version="1.0">
  <fragment name="a" terminus="N" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="" cTerm="C-10-1H-1" neutralLoss="" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="a-H2O" terminus="N" specificity="STED">
    <formula nTerm="" cTerm="H-1" neutralLoss="H2O" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="a-NH3" terminus="N" specificity="RKQN">
    <formula nTerm="" cTerm="NH2" neutralLoss="" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="b" terminus="N" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="" cTerm="H-1" neutralLoss="" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="b-H2O" terminus="N" specificity="STED">
    <formula nTerm="" cTerm="H-1" neutralLoss="H2O" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="b-NH3" terminus="N" specificity="RKQN">
    <formula nTerm="" cTerm="NH2" neutralLoss="" />
    <termFilter nTerm="1" cTerm="1" />
  </fragment>
  <fragment name="c" terminus="N" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="" cTerm="O" neutralLoss="" />
    <termFilter nTerm="0" cTerm="1" />
  </fragment>
  <fragment name="c-ladder" terminus="N" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="" cTerm="OH" neutralLoss="" />
    <termFilter nTerm="0" cTerm="1" />
  </fragment>
  <fragment name="im" terminus="S" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="H" cTerm="C-10-1H-1" neutralLoss="" />
    <termFilter nTerm="1" cTerm="0" />
  </fragment>
  <fragment name="int" terminus="I" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="H" cTerm="H-1" neutralLoss="" />
    <termFilter nTerm="0" cTerm="0" />
  </fragment>
  <fragment name="int-CO" terminus="I" specificity="ACDEFGHKLNQRSTVYW">
    <formula nTerm="H" cTerm="C-10-1H-1" neutralLoss="" />
    <termFilter nTerm="0" cTerm="0" />
  </fragment>
</mspyFragments>```
15.4. Enzymes

Configuration file “enzymes.xml” contains all the enzymes definitions for protein digestion.
<allowMods before="0" after="1" />
</enzyme>
<enzyme name="Cathepsin G">
  <expression><![CDATA[[YWFL][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Chymotrypsin">
  <expression><![CDATA[[YWFL][^P]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Clostripain">
  <expression><![CDATA[[R][^P]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Elastase">
  <expression><![CDATA[[AVLIGS][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Glu-C Bic">
  <expression><![CDATA[[E][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Glu-C Phos">
  <expression><![CDATA[[ED][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Hydroxylamine">
  <expression><![CDATA[[N][G]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="0" />
</enzyme>
<enzyme name="Lys-C">
  <expression><![CDATA[[K][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Lys-N">
  <expression><![CDATA[[A-Z][K]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="1" after="0" />
</enzyme>
<enzyme name="Non-Specific">
  <expression><![CDATA[[A-Z][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="1" after="1" />
</enzyme>
<enzyme name="Papain">
  <expression><![CDATA[[RK][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Pepsin">
  <expression><![CDATA[[LF][^VAG]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Proteinase K">
  <expression><![CDATA[[YWFL][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>
<enzyme name="Subtilisin">
  <expression><![CDATA[[RHK][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
</enzyme>
<enzyme name="Thermolysin">
  <expression><![CDATA[[A-Z][LFIVMA]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="1" after="0" />
</enzyme>

<enzyme name="TrypAspN">
  <expression><![CDATA[(([KR][^P])|([A-Z][D]))]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="0" />
</enzyme>

<enzyme name="TrypChymo">
  <expression><![CDATA[FYWLKR[^P]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>

<enzyme name="Trypsin">
  <expression><![CDATA[[KR][^P]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>

<enzyme name="Trypsin/P">
  <expression><![CDATA[[KR][A-Z]]]]></expression>
  <formula nTerm="H" cTerm="OH" />
  <allowMods before="0" after="1" />
</enzyme>

</mspyEnzymes>